A Block-Sensitivity Lower Bound for Quantum Testing Hamming Distance

نویسنده

  • Marcos Villagra
چکیده

The Gap-Hamming distance problem is the promise problem of deciding if the Hamming distance h between two strings of length n is greater than a or less than b, where the gap g = |a − b| ≥ 1 and a and b could depend on n. In this short note, we give a lower bound of Ω( √ n/g) on the quantum query complexity of computing the GapHamming distance between two given strings of lenght n. The proof is a combinatorial argument based on block sensitivity and a reduction from a threshold function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Quantum Hamming Bound

It is desirable to study upper and lower bounds on the minimum distance and dimensions of quantum codes, so the computer search on the code parameter can be minimized and optimal codes can be known. It is a well-known fact that Singleton and Hamming bounds hold for classical codes [9]. We need some bounds on the achievable minimum distance of a quantum stabilizer code. Perhaps the simplest one ...

متن کامل

A Note on Quantum Hamming Bound

Quantum stabilizer codes are a known class of quantum codes that can protect quantum information against noise and decoherence. Stabilizer codes can be constructed from self-orthogonal or dualcontaining classical codes, see for example [3, 8, 11] and references therein. It is desirable to study upper and lower bounds on the minimum distance of classical and quantum codes, so the computer search...

متن کامل

Tight Bounds on the Minimum Euclidean Distance for Block Coded Phase Shift Keying

We present upper and lower bounds on the minimum Euclidean distance dEmin(C) for block coded PSK. The upper bound is an analytic expression depending on the alphabet size q, the block length n and the number of codewords jCj of the code C. This bound is valid for all block codes with q 4 and with medium or high rate codes where jCj > (q=3). The lower bound is valid for Gray coded binary codes o...

متن کامل

Bounds on the List-Decoding Radius of Reed--Solomon Codes

Techniques are presented for computing upper and lower bounds on the number of errors that can be corrected by list decoders for general block codes and speci cally for Reed Solomon RS codes The list decoder of Guruswami and Sudan implies such a lower bound referred to here as the GS bound for RS codes It is shown that this lower bound given by means of the code s length the minimum Hamming dis...

متن کامل

Lower Bounds on the Deterministic and Quantum Communication Complexities of Hamming-Distance Problems

Alice and Bob want to know if two strings of length n are almost equal. That is, do they differ on at most a bits? Let 0 ≤ a ≤ n − 1. We show that any deterministic protocol, as well as any error-free quantum protocol (C∗ version), for this problem requires at least n − 2 bits of communication. We show the same bounds for the problem of determining if two strings differ in exactly a bits. We al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1705.09710  شماره 

صفحات  -

تاریخ انتشار 2017